
Management Basics

4 CROSSTALK The Journal of Defense Software Engineering December 2003

People Factors in Software Management: Lessons
From Comparing Agile and Plan-Driven Methods

While methodologies, management techniques, and technical approaches are valuable, a study of agile and plan-driven approaches
has confirmed that the most critical success factors are much more likely to be in the realm of people factors. This paper discusses
five areas where people issues can have a significant impact: staffing, culture, values, communications, and expectations management.

Recently we have been studying the
characteristics of agile and plan-driven

methods to provide guidance in balancing
the agility and discipline required for suc-
cessful software acquisitions or develop-
ments [1]. One of the most significant
results of our analysis was the realization
that, while methodologies, management
techniques, and technical approaches are
valuable, the most critical success factors
are much more likely to be in the realm of
people factors.

We believe that the agilists have it right
in valuing individuals and interactions over
processes and tools [2]. However, they are
not the first to emphasize this. There is a
long list of wake-up calls: Weinberg’s 1971
“Psychology of Computer Programming”
[3], the Scandinavian participatory design
movement [4], DeMarco and Lister’s 1987
“Peopleware” [5], and Curtis’ studies of
people factors [6] and development of the
People Capability Maturity Model® [7].

There is also a wealth of corroborative
evidence that people factors dominate
other software cost and quality drivers.
These include the 1986 Grant-Sackman
experiments showing 26:1 the variations in
people’s performance [8], and the 1981
and 2000 Constructive Cost Model
(COCOMO) and COCOMO II cost
model calibrations showing 10:1 the
effects of personnel capability, experience,
and continuity [9, 10]. However, the
agilists may finally provide a critical mass
of voices amplifying this message.

In this article, we discuss five areas
where we believe significant progress can
be made: staffing, culture, values, commu-
nications, and expectations management.

Staffing
In essence, software engineering is done
“of the people, by the people, and for the
people.”
• Of the People. People organize them-

selves into teams to develop mutually
satisfactory software systems.

• By the People. People identify what
software capabilities they need, and
other people develop these for them.

• For the People. People pay the bills for
software development and use the
resulting products.
The two primary categories of players

in the software development world are
customers and developers.

Customers
Unfortunately, software engineering is still
struggling with a separation-of-concerns legacy
that contends translating customer
requirements into code is so hard that it
must be accomplished in isolation from
people concerns – even the customer’s. A
few quotes will illustrate the situation:
• The notion of user cannot be precisely

defined, and therefore it has no place
in computer science or software engi-
neering [11].

• Analysis and allocation of the system
requirements is not the responsibility
of the software engineering group, but
it is a prerequisite for their work [12].

• Software engineering is not project
management [13].
In today’s and tomorrow’s world,

where software decisions increasingly
drive system outcomes, this separation of
concerns is increasingly harmful.
Customers must be more closely related to
the development process. One of the
major differences between agile and plan-
driven methods is that agile methods
strongly emphasize having dedicated and
collocated customer representatives, while
plan-driven methods count on a good deal
of up-front, customer-developer work on
contractual plans and specifications.

For agile methods, the greatest risk is
that insistence on a dedicated, collocated
customer representative will cause the cus-
tomer organization to supply the person
that is most expendable. This risk estab-
lishes the need for criteria to determine the
adequacy of customer representatives.

In our critical success factor analysis of
more than 100 e-services projects at the

University of Southern California, we have
found that success depends on having cus-
tomer representatives who are collabora-
tive, representative, authorized, commit-
ted, and knowledgeable (CRACK) per-
formers. If the customer representatives
are not collaborative, they will sow discord
and frustration, resulting in the loss of
team morale. If they are not representa-
tive, they will lead the developers to deliv-
er unacceptable products. If they are not
authorized, they will incur delays seeking
authorization or, even worse, lead the proj-
ect astray by making unauthorized com-
mitments. If they are not committed, they
will not do the necessary homework and
will not be there when the developers need
them most. Finally, if they are not knowl-
edgeable, they will cause delays, unaccept-
able products, or both.

This summary of customer impact on
the landmark Chrysler Comprehensive
Compensation project, considered to be
the first eXtreme Programming (XP) proj-
ect, is a good example of the need for
CRACK customer representatives.

The on-site customer in this proj-
ect had a vision of the perfect sys-
tem she wanted to develop. She was
able to provide user stories that
were easy to estimate. Moreover,
she was with the development team
every day, answering any business
questions the developer had.

Halfway [through] the project, sev-
eral things changed, which eventu-
ally led to the project being can-
celled. One of the changes was the
replacement of the on-site cus-
tomer, showing that the actual way
in which the customer is involved is
one of the key success factors in an
XP project. The new on-site cus-
tomer was present most of the
time, just like the previous on-site
customer, and available to the
development team for questions.
Unfortunately, the requirements

Barry Boehm
University of Southern California

Richard Turner
The George Washington University

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office.

and user stories were not as crisp as
they were before. [14]

Plan-driven methods also need
CRACK customer representatives and
benefit from full-time, on-site participa-
tion. Good planning artifacts, however,
enable them to settle for part-time
CRACK representatives who provide fur-
ther benefits by keeping active in customer
operations. The greatest customer chal-
lenge for plan-driven methods is to keep
project control from falling into the hands
of overly bureaucratic contract managers
who prioritize contract compliance above
getting project results.

A classic example of customer bureau-
cracy is provided in Robert Britcher’s
book, “The Limits of Software” [15],
describing his experience on perhaps the
world’s biggest failed software project: the
FAA/IBM Advanced Automation System
for U.S. National Air Traffic Control. Due
to many bureaucratic and other problems,
including responding to change over fol-
lowing a plan, the project was overrun by
several years and billions of dollars.

For example, one of the software
development groups came up with a way
to reduce the project’s commitment to a
heavyweight brand of software inspec-
tions that were slowing the project down
by consuming too much staff effort in
paperwork and redundant tasks. The
group devised a lightweight version of the
inspection process. It was comparably suc-
cessful in finding defects, but with much
less time and effort. Was the group
rewarded for doing this? No. The con-
tracting bureaucracy sent them a cease-
and-desist letter faulting them for contract
noncompliance and ordered them to go
back to the heavyweight inspections.
Agilists justifiably deride this kind of plan-
driven bureaucracy.

Developers
Critical people-factors for developers
using agile methods include amicability,
talent, skill, and communication [16]. An
independent assessment identifies this as a
potential problem for agile methods:
“There are only so many Kent Becks in the
world to lead the team. All of the agile
methods put a premium on having premi-
um people …” [17]. Figure 1 distinguishes
the most effective operating points of
agile and plan-driven projects [18, 19].
Both operate best with a mix of developer
skills and understanding, but agile meth-
ods tend to need a richer mix of higher-
skilled people.

When you have such people available
on your project, statements like, “A few

designers sitting together can produce a
better design than each could produce
alone,” are valid. If not, you are more like-
ly to get design by committee, with the
opposite effect. The plan-driven methods
do better with great people, but are gener-
ally more able to plan the project and
architect the software so that less-capable
people can contribute with low risk. A sig-
nificant consideration here is the unavoid-
able statistic that 49.999 percent of the
world’s software developers are below
average (slightly more precisely, below
median).

It is important to be able to classify
the type of personnel required for suc-
cess in the various methods. Alistair
Cockburn has addressed levels of skill
and understanding required for perform-
ing various method-related functions,
such as using, tailoring, adapting, or revis-
ing a method. Drawing on the three lev-
els of understanding in the martial art
Aikido, he has identified three levels of
software method understanding that help
sort out what various levels of people can
be expected to do within a given method
framework [18]. Modifying his work to
meet our needs, we split his Level 1 to
address some distinctions between agile
and plan-driven methods, and added an
additional level to address the problem of
method-disrupters. Our version is pro-
vided in Table 1.

The characteristics of Level -1 people
should be rapidly identified and reassigned
to work other than performing on either
agile or plan-driven teams; we recommend
such activities as commercial off-the-shelf
assessment or my-four-year-old-can’t-break-it
testing.

Level 1B people are average and below,
less-experienced, hard-working develop-
ers. They can function well in performing
straightforward software development in a
stable situation. However, they are likely to
slow an agile team trying to cope with
rapid change, particularly if they form a
majority of the team. They can form a
well-performing majority of a stable, well-

structured, plan-driven team.
Level 1A people can function well on

agile or plan-driven teams if there are
enough Level 2 people to guide them.
When agilists refer to being able to suc-
ceed on agile teams with a ratio of five
Level 1 people per each Level 2 person,
they are generally referring to Level 1A
people.

Level 2 people can function well in
managing a small, precedented agile or
plan-driven project but need the guidance
of Level 3 people on a large or unprece-
dented project. Some Level 2s have the
capability to become Level 3s with experi-
ence. Some do not.

Staffing and the Home Grounds
We found that these skill levels were one
of the five key discriminators in determin-
ing whether a new project would best fit
the home grounds of agile and plan-driven
methods. Home grounds are the set of
conditions under which the methods are
most likely to succeed. In Figure 2 (see
page 6), we graphically portray these home
grounds based on five critical factors. In
general, the closer to the center, the more
the factors favor agility.

The personnel axis in Figure 2 shows
that the home ground for agile methods
requires at least 30 percent to 35 percent

December 2003 www.stsc.hill.af.mil 5

People Factors in Software Management: Lessons From Comparing Agile and Plan-Driven Methods

A
d

a
p

ti
n

g

(S
k
ill

,
U

n
d

e
rs

ta
n

d
in

g
)

Light

Low

Optimizing

(Process, Documentation)

Heavy

Typical

Rigorous

Methodology

Typical
Agile

Methodology

High

X

X

Figure 1: Balancing, Optimizing, and
Adapting Dimensions [16]

Level Characteristics

3 Is able to revise a method (break its rules) to fit an unprecedented new situation.

2 Is able to tailor a method to fit a precedented new situation.

1A With training, is able to perform discretionary method steps (e.g., sizing stories to fit
increments, composing patterns, compound refactoring, and complex COTS integration).
Can become Level 2 with experience.

1B With training, is able to perform procedural method steps (e.g., coding a simple
method, simple refactoring, following coding standards and capability model

procedures, and running tests). Can master some Level 1A skills with experience.

-1 May have technical skills, but is unable or unwilling to collaborate or follow shared

methods.

Table 1: Levels of Software Method Understanding and Use [17]

Management Basics

6 CROSSTALK The Journal of Defense Software Engineering December 2003

of the project’s people to have Level 2 and
3 skills, with no more than 10 percent of
the people with Level 1B skills. The home
ground for plan-driven methods can suc-
ceed with up to 30 percent to 40 percent
Level 1B people, and as few as 15 percent
to 20 percent Level 2 and 3 people.

In fact, three of the five key discrimi-
nators in Figure 2 are people-related: per-
sonnel (as discussed above), size, and culture.
The size of the project is measured in the
number of people. Agile methods succeed
best on projects of 10 people or less, while
plan-driven methods work better on proj-
ects of 100 people and up. In his landmark
XP book, Kent Beck says,

Size clearly matters. You probably
couldn’t run an XP project with a
hundred programmers. Not fifty.
Nor twenty, probably. Ten is defi-
nitely doable. [20]

Projects in the middle range of the key dis-
criminator factors need a hybrid mix of
agile and plan-driven methods [1]. We will
next look more closely at culture.

Culture
The second area of people possibilities,
and the third people-related key discrimi-
nator between agile and plan-driven home
grounds, is culture. In an agile culture, the
people feel comfortable and are empow-

ered when there are many degrees of freedom
available for them to define and work
problems. This is the classic craftsman
environment, where each person is expect-
ed and trusted to do whatever work is nec-
essary for the success of the project. This
includes looking for common or unno-
ticed tasks and completing them.
In a plan-driven culture, the people feel
comfortable and empowered when there
are clear policies and procedures that define
their role in the enterprise. This is more of
a production-line environment where each
person’s tasks are well defined. The expec-
tation is that they will accomplish the tasks
to specification so that their work prod-
ucts will easily integrate into others’ work
products with limited knowledge of what
others are actually doing.

These cultures are reinforced as people
tend to self-select for their preferred cul-
ture, and as people within the culture are
promoted to higher management levels.
Once a culture is well established, it is dif-
ficult and time consuming to change. This
cultural inertia may be the most significant
challenge to the integration of agile and
plan-driven approaches.

To date, agile cultural change has had a
bottom-up, revolutionary flavor. Failing
projects with no hope of success have
been the usual pilots, supported by an it
can’t hurt attitude from management and a
no challenge is too hard adrenaline-charged
response from practitioners. Successes
have been extraordinary in many cases and
have been used to defend migration to less
troubled projects.

Early Capability Maturity Model® for
Software (SW-CMM®) [21] adopters faced
similar challenges, although there was early
involvement of middle management. The
concept of culture change evolved rapidly
and is now well understood by the man-
agers and software engineering process
groups. These have been the main change
agents in evolving their organizations from
following improvised, ad hoc processes
toward following plan-driven, SW-CMM-
compliant processes.

The new CMM IntegrationSM (CMMI®)
[22] upgrades the SW-CMM in more agile
directions, with new process areas for inte-
grated teaming, risk management, and
overall integrated systems and software
engineering. A number of organizations
are welcoming this opportunity to add
more agility to their organizational culture.
Others that retain a more bureaucratic
interpretation of the SW-CMM are facing
the challenge of change-averse change agents
who have become quite comfortable in
their bureaucratic culture.

Values
Along with people come values – different
values. One of the most significant and
underemphasized challenges in software
engineering is to reconcile different users’,
customers’, developers’, and other suc-
cess-critical stakeholders’ value proposi-
tions about a proposed software system
into a mutually satisfactory win-win sys-
tem definition and outcome. Unfor-
tunately, software engineering is caught in
a value-neutral time warp, where every
requirement, use case, object, test case,
and defect is considered to be equally
important.

Most process improvement initiatives
and debates, including the silver-bullet
debate are inwardly focused on improving
software productivity rather than outward-
ly focused on delivering higher value per
unit cost to stakeholders. Again, agile
methods and their attention to prioritizing
requirements and responding to changes
in stakeholder value propositions are
pushing us in more high-payoff directions.

Other aspects of value-based software
engineering practices and payoffs are
described in “Value-Based Software
Engineering” [23]. These include the
DMR Consulting Group’s Benefits
Realization Approach and Results Chains
[24], stakeholder win-win requirements
negotiation [25], business case analysis
[26], and the Kaplan-Norton Balanced
Scorecard technique [27].

Communications
Even with closely knit in-house develop-

40

30

20

10

0

15

20

25

30

35

1

5

1
0
 3
0
 5
0

90

70

50

30

10

3

10

30

100

300

Many
Lives

Single
Life

Essential
Funds

Discretionary
Funds

Comfort

Personnel
(% Level 1B) (% Level 2 and 3)

Criticality
(Loss due to impact of defects)

Dynamism
(% Requirements-change/month)

Size
(Number of personnel)

Culture
(% Thriving on chaos vs. order)

Agile Plan-Driven

Figure 2: Key Discriminators of Agile and Plan-Driven Home Grounds

SM CMM Integration is a service mark of Carnegie Mellon
University.

® CMM is registered in the U.S. Patent and Trademark
Office.

December 2003 www.stsc.hill.af.mil 7

ment organizations, the “I can’t express
exactly what I need, but I’ll know it when I see
it “ syndrome limits people’s ability to
communicate an advance set of require-
ments for a software system. If software
definition and development occurs across
organizational boundaries, even more
communications work is needed to define
and evolve a shared system vision and
development strategy. The increasingly
rapid pace of change exacerbates the
problem and raises the stakes of inade-
quate communication.

Agile methods rely heavily on commu-
nication through tacit, interpersonal knowledge
for their success. They cultivate the devel-
opment and use of tacit knowledge,
depending on the understanding and expe-
rience of the people doing the work and
their willingness to share it. Knowledge is
specifically gathered through team plan-
ning and project reviews (an activity
agilists refer to as retrospection). It is shared
across the organization as experienced
people work on more tasks with different
people.

Agile methods generally exhibit more
frequent, person-to-person communica-
tion. As stated in the Agile Manifesto,
emphasis is given to individuals and interac-
tions. Few of the agile communications
channels are one-way, showing a prefer-
ence for collaboration. Stand-up meetings,
pair programming, and the planning game
are all examples of the agile communica-
tion style and its investments in developing
shared tacit knowledge.

Relying completely on tacit knowledge
is like performing without a safety net.
While things go well, you avoid the extra
baggage and setup effort, but there may be
situations that will make you wish for that
net. Assuming that everyone’s tacit knowl-
edge is consistent across a large team is
risky, and as people start rotating off the
team, the risk gets higher.

At some point, a group’s ability to
function exclusively on tacit knowledge
will run up against well-known scalability
laws for group communication. For a team
with N members, there are N(N-1)/2 dif-
ferent interpersonal communication paths
to keep current. Even broadcast tech-
niques such as stand-up group meetings
and hierarchical team-of-teams techniques
run into serious scalability problems.

Plan-driven methods rely heavily on
explicit documented knowledge. With plan-driv-
en methods, communication tends to be
one-way. Communication is generally from
one entity to another rather than between
two entities. Process descriptions, progress
reports, and the like are nearly always com-
municated as unidirectional flow.

We should note that this distinction
between agile-tacit and plan-driven-explicit is
not absolute. Agile methods’ source code
and test cases certainly qualify as explicit
documented knowledge, and even the
most rigorous plan-driven method does
not try to get along without some inter-
personal communication to ensure a con-
sistent, shared understanding of docu-
mentation intent and semantics.

When agile methods employ documen-
tation, they emphasize doing the minimum
essential amount. Unfortunately, most
plan-driven methods suffer from a tailoring-
down syndrome, which is sadly reinforced
by most government procurement regula-
tions. These plan-driven methods are
developed by experts who want them to
provide users with guidance for most or all
foreseeable situations. The experts, there-
fore, make them very comprehensive, but
tailored down for less critical or less com-
plex situations. The experts understand
tailoring the methods and often provide
guidelines and examples for others to use.

Unfortunately, less expert and less self-
confident developers, customers, and
managers tend to see the full-up set of
plans, specifications, and standards as a
security blanket. At this point, a sort of
Gresham’s Law (bad money drives out good
money) takes over, and the least-expert par-
ticipant can drive the project by requiring
the full set of documents rather than an
appropriate subset. While the nonexperts
rarely read the ever-growing stack of doc-
uments, they will maintain a false sense of
security in the knowledge they have fol-
lowed best practices to ensure project pre-
dictability and control. Needless to say, the
expert methodologists are then frustrated
with how their tailorable methods are used
– and usually verbally abused – by devel-
opers and acquirers alike. Agilists have cer-
tainly highlighted this significant problem
in plan-driven methods.

Except for the landmark people-ori-
ented sources mentioned above, there are
frustratingly few sources of guidance and
insight on what kinds of communications
work best in what situations. Cockburn’s
“Agile Software Development” [18] is a
particularly valuable recent source. It gets
its priorities right by not discussing meth-
ods until the fourth chapter, and spending
the first hundred or so pages discussing
why we have problems communicating,
and what can be done about it. It nicely
characterizes software development as a
cooperative game of invention and com-
munication, and provides numerous help-
ful communication concepts and tech-
niques. Some examples are his definition
of the three skill levels based on Aikido

discussed earlier, human success and fail-
ure modes, information radiators and con-
vection currents, and the effects of dis-
tance on communication effectiveness.

Expectations Management
Our primary conclusion in analyzing soft-
ware project critical success factors has
been that the differences between suc-
cessful and troubled software projects are
most often the difference between good
and bad expectations management. This
coincides with a major finding in a recent
root-cause analysis of trouble factors in
Department of Defense software proj-
ects [28].

Most software people do not do well at
expectations management. They have a
strong desire to please and to avoid con-
frontation, and have little confidence in
their ability to predict software project
schedules and budgets, making them a
pushover for aggressive customers and
managers trying to get more software for
less time and money.

The most significant factor in success-
ful agile or plan-driven teams is that they
have enough process mastery, preparation,
and courage to be able to get their cus-
tomers to agree to reduce functionality or
increase schedule in return for accommo-
dating a new high-priority change. They
are aware that setting up unrealistic expec-
tations is not a win for the customers
either, and are able to convince the cus-
tomers to scale back their expectations.
Both agile short iterations and plan-driven
productivity calibration are keys to suc-
cessfully managing software expectations.

Conclusion
Giving top-priority attention to such peo-
ple-related factors as staffing, culture, val-
ues, communications, and expectations
management is critical to successful soft-
ware development and management.
Beyond this top-level summary of key
factors, there are many valuable sources
of guidance on how to succeed with the
people-related aspects of your software
projects.

Besides the classic Weinberg, Ehn, and
DeMarco-Lister books previously cited,
there are some further references that can
help you improve your people factors
whether you use agile, plan-driven, or
hybrid development approaches. Good
agilist treatments of people and their
ecosystems are provided in Jim
Highsmith’s “Agile Software Develop-
ment Ecosystems” [19] and Alistair
Cockburn’s “Agile Software Develop-
ment” [18]. Complementary plan-driven
approaches are provided in Watts

People Factors in Software Management: Lessons From Comparing Agile and Plan-Driven Methods

Management Basics

Humphrey’s “Managing Technical
People” [29] and his Personal Software
ProcessSM [30], as well as the People CMM
developed by Bill Curtis, Bill Hefley, and
Sally Miller [31].

As engineers, our selection of reading
materials tends to gravitate toward pro-
gramming, architecture, or processes for
our next learning experience. We strongly
recommend you choose one of the books
above as a way to balance your technical
and people skills.◆

References
1. Boehm, B., and R. Turner. Balancing

Agility and Discipline: A Guide for the
Perplexed. Boston: Addison-Wesley,
2004.

2. Beck, Kent, et al. “The Agile
Manifesto.” The Agile Alliance, 2001
<www.agilealliance.com>.

3. Weinberg, G. The Psychology of
Computer Programming. New York:
Van Nostrand-Reinhold, 1971.

4. Ehn, P., Ed. Work-Oriented Design of
Computer Artifacts. Mahwah, NJ:
Lawrence Earlbaum Associates, Mar.
1990.

5. DeMarco, T., and T. Lister. People-
ware: Productive Projects and Teams.
New York: Dorset House, 1999.

6. Curtis, B., H. Krasner, and N. Iscoe. “A
Field Study of the Software Design
Process for Large Systems.” Comm.
ACM 31. 11 (Nov. 1988): 1268-1287.

7. Curtis, B. et al. People Capability
Maturity Model. Reading, MA:
Addison-Wesley, 2001.

8. Grant, E., and H. Sackman. “An
Exploratory Investigation of Pro-
grammer Performance Under On-Line
and Off-Line Conditions.” Report SP-
2581, System Development Corp.,
Sept. 1966.

9. Boehm, B. Software Engineering
Economics. Upper Saddle River, NJ:
Prentice Hall, 1981.

10. Boehm, B., et al. Software Cost
Estimation With COCOMO II. Upper
Saddle River, NJ: Prentice Hall, 2000.

11. Dijkstra, E. Panel Discussion. Fourth
International Conference on Software
Engineering, 1979.

12. Paulk, M., et al. The Capability
Maturity Model for Software:
Guidelines for Improving the Software
Process. Reading, MA: Addison-
Wesley, 1994

13. Tucker, A. “On the Balance Between
Theory and Practice.” IEEE Software
Sept.-Oct. 2002.

14. van Duersen, A. “Customer Involve-
ment in Extreme Programming.” ACM
Software Engineering Notes Nov.
2001: 70-73.

15. Britcher, R. N. The Limits of Software.
Reading, MA: Addison-Wesley, 1999.

16. Highsmith, J., and A. Cockburn. “Agile
Software Development: The Business
of Innovation.” Computer Sept. 2001:
120-122

17. Constantine, L. “Methodological
Agility.” Software Development June
2001: 67-69.

18. Cockburn, Alistair. Agile Software
Development. Boston: Addison-
Wesley, 2002.

19. Highsmith, Jim. Agile Software
Development Ecosystems. Boston:
Addison-Wesley, 2002.

20. Beck, Kent. Extreme Programming
Explained. Boston: Addison-Wesley,
1999: 157.

21. Paulk, et al. The Capability Maturity
Model. Reading, MA: Addison-Wesley,
1994.

22. Ahern, D. M., A. Clouse, and R.
Turner. CMMI Distilled: A Practical
Introduction to Integrated Process
Improvement. 2nd ed. Boston:
Addison-Wesley, 2003.

23. Boehm, B. “Value-Based Software
Engineering.” ACM Software En-

gineering Notes Mar. 2003.
24. Thorp, J. The Information Paradox.

McGraw-Hill, 1998.
25. Boehm, B., P. Bose, E. Horowitz, and

M. J. Lee. Software Requirements As
Negotiated Win Conditions. Proc. of
the First International Conference on
Requirements Engineering, Colorado
Springs, CO. IEEE Computer Society
Press, Apr. 1994.

26. Reifer, D. Making the Software
Business Case. Boston: Addison-
Wesley, 2002.

27. Kaplan, R., and D. Norton. The
Balanced Scorecard: Translating
Strategy into Action. Boston: Harvard
Business School Press, 1996.

28. McGarry, J., and Charette, R. “Systemic
Analysis of Assessment Results from
DoD Software-Intensive System
Acquisitions.” Tri-Service Assessment
Initiative Report, Office of the Under
Secretary of Defense (Acquisition,
Technology, Logistics), 2003.

29. Humphrey, W. Managing Technical
People. Boston: Addison-Wesley, 1997.

30. Humphrey, W. Introduction to the
Personal Software Process. Boston:
Addison-Wesley, 1997.

31. Curtis, B., B. Hefley, and S. Miller. The
People Capability Maturity Model.
Boston: Addison-Wesley, 2001.

8 CROSSTALK The Journal of Defense Software Engineering December 2003

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Corp., TRW, and the
Office of the Secretary of Defense as
the director of Defense Research and
Engineering Software and Computer
Technology Office. Boehm originat-
ed the spiral model, the Constructive
Cost Model, and the stakeholder win-
win approach to software manage-
ment and requirements negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 900989-0781
Phone: (213) 740-8163,

(213) 740-5703
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Richard Turner, D.
Sc., is a member of the
Engineering Manage-
ment and Systems En-
gineering Faculty at The
George Washington

University in Washington, D.C.
Currently, he is the assistant deputy
director for Software Engineering and
Acquisition in the Software Intensive
Systems Office of the Under Secretary
of Defense (Acquisition, Technology,
and Logistics). Turner is co-author of
the book “CMMI Distilled.”

1931 Jefferson Davis Highway
Suite 104
Arlington, VA 22202
Phone: (703) 602-0581 ext. 124
E-mail: rich.turner.ctr@osd.mil

SM Personal Software Process is a service mark of Carnegie
Mellon University.

